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Abstract

In this paper we establish some estimates for the higher-order mean curvature of a complete spacelike
hypersurface in spacetimes with sectional curvature satisfying certain condition. We also obtain the estimate
for the mean curvature of a complete spacelike submanifold in semi-Riemannian space forms.
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1. Introduction

Spacelike submanifolds in semi-Riemannian manifolds have been of increasing interest in the
recent years from various points of view, especially in the case of hypersurfaces. For instance, In
reference [1] Aledo and Alı́as characterized the spacelike hyperplanes as the only complete space-
like hypersurfaces with constant mean curvature in Lorentz–Minkowski space which lie in two
parallel spacelike hyperplanes, and the hyperbolic spaces as the only complete spacelike hyper-
surfaces with constant mean curvature in Lorentz–Minkowski space which lie in two concentric
hyperbolic spaces. They also obtained some estimates for the higher-order mean curvatures of
complete spacelike hypersurfaces in Lorentz–Minkowski space which are bounded by hyperbolic
spaces. Similar estimates also holds for spacelike hypersurfaces in de Sitter space [2].

Note that both the Lorentz–Minkowski space and the de Sitter space belong to the classical
Robertson-Walker spacetimes which are spatially homogeneous. Since the spatial homogeneity
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could not be realistic, the classical Robertson-Walker spacetimes are only appropriate as a rough
approach to consider the universe in the large, but not to consider it in a more accurate scale.
Thus it is natural to study spacelike hypersurfaces in more general spacetimes, and that has
been considered for generalized Robertson-Walker spacetimes (see e.g.,[3]). In this paper, we
shall consider spacelike hypersurface in more general spacetimes which lies in a certain open
set in the chronological future or chronological past of a point such that, the corresponding
Lorentzian distance function is differentiable on it. Physically, the events we may experience in
the universe are the ones in our chronological future. One of the tools to analyze the geometry
of our chronological future is the Lorentzian distance function, and we shall use it together with
the generalized maximum principle [7] to establish some estimates for the higher order mean
curvatures of complete spacelike hypersurfaces in general spacetimes with sectional curvature
satisfying certain condition. We also obtain the estimate for the mean curvature of complete
spacelike submanifolds in semi-Riemannian space forms. In order to state our results, let us first
recall the relative result in [1] and fix some notations.

Let (Rn+1
1 , 〈, 〉) be the Lorentz–Minkowski (n+ 1)-space. First we have

Proposition 1. ([1]) Let ψ : Mn → Rn+1
1 be a connected and complete spacelike hypersurface

in Lorentz–Minkowski space whose sectional curvatures are bounded away from −∞. If

sup
M

〈ψ − a,ψ − a〉 = −r2 (1)

for some a ∈ Rn+1
1 and r > 0, then for j = 1, . . . , n,

sup
M

| Hj |≥ 1

rj
,

where Hj is the jth mean curvature of ψ. Consequently, there exists no complete spacelike hy-
persurface ψ : Mn → Rn+1

1 whose sectional curvatures are bounded away from −∞ and that
Hj = 0 for some odd j or Hj ≤ 0 for some even j and ψ(M) ⊂ Ω(a, r) for some a ∈ Rn+1

1 and
r > 0, where

Ω(a, r) = {x ∈ Rn+1
1 : 〈x− a, x− a〉 ≤ −r2} ⊂ Rn+1

1 . (2)

Our first result is to generalize Proposition 1 into the case where Rn+1
1 is replaced by general

spacetime whose sectional curvature satisfying certain condition. For this purpose, let us interpret
condition (1) in term of Lorentzian distance d on Rn+1

1 . Let I+(a) and I−(a) be the chronological
future and chronological past of a in Rn+1

1 , respectively. Then by the definition of Lorentzian
distance (see e.g., [6] or [4]) it is easy to know that the condition (1) is equivalent to

inf
M
d(a,ψ) = r

if ψ(M) ⊂ I+(a) or

inf
M
d(ψ, a) = r

if ψ(M) ⊂ I−(a), while the definition (2) of Ω(a, r) can be rewritten as

Ω(a, r) = {x ∈ Rn+1
1 : d(a, x) ≥ r or d(x, a) ≥ r}.

LetNn+1
1 be a spacetime of signature (1, n) and d : M ×M → R ∪ {∞} be the corresponding

Lorentzian distance function. We note that for general spacetime the Lorentzian distance function
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with respect to a given point is not differentiable on the chronological future or chronological
past of the point. In fact it is not even continuous in general on a spacetime other than a globally
hyperbolic spacetime. Nevertheless, in strongly causal spacetimes, Lorentzian distance function
with respect to a point is differentiable at least in a sufficiently near chronological future or
chronological past of the point. For a ∈ Nn+1

1 let I+ (a) (resp. I− (a)) be the open set such that
d(a, ·) (resp. d(·, a)) is differentiable on it. We shall give the precise definitions of I+ (a) and I−
(a) in Section 2. For c ∈ R, r > 0, let

α(c, r) =

⎧⎪⎨
⎪⎩

√
c coth(

√
cr), c > 0;

1
r
, c = 0;√−c cot(

√−cr), c < 0.

We shall prove the following.

Theorem 2. Let Nn+1
1 be a spacetime of signature (1, n) with K(π) ≥ c for any mixed 2-

plane π of signature (1, 1) in Nn+1
1 , where K(·) denotes the sectional curvature. Assume that

for a ∈ Nn+1
1 , I+ (a) �= ∅ (resp. I− (a) �= ∅). Let ψ : Mn → Nn+1

1 be a complete spacelike
hypersurface in Nn+1

1 whose sectional curvatures are bounded away from −∞. If ψ(M) ⊂ I+
(a) (resp. ψ(M) ⊂ I− (a)) and

inf
M
d(a,ψ) = r (resp. inf

M
d(ψ, a) = r)

for some r > 0 (when c < 0, we assume that r < π/(2
√−c)), then for j = 1, · · · , n,

sup
M

| Hj |≥ α(c, r)j.

Consequently, there exists no complete spacelike hypersurface ψ : Mn → Nn+1
1 whose sectional

curvatures are bounded away from −∞, and thatHj = 0 for some odd j orHj ≤ 0 for some even j
andψ(M) ⊂ Ω(a, r) for some a ∈ Nn+1

1 and r > 0 (when c < 0, we assume that r < π/(2
√−c)),

where

Ω(a, r) = {x ∈ Nn+1
1 : d(a, x) ≥ r} ∩ I+(a).

If Nn+1
1 has nonnegative timelike sectional curvature, it is easy to know from Proposition

11.15 of [4] that Nn+1
1 has no future and past timelike conjugate points. With this in mind, we

know from the Lorentzian Hadamard-Cartan theorem (see [4], p. 414) that if Nn+1
1 is a future

one-connected globally hyperbolic spacetime with nonnegative timelike sectional curvature, then
the Lorentzian distance function with respect to a given point is differentiable on the chronological
future or chronological past of the point, i.e., I+ (a) = I+(a) and I− (a) = I−(a). We recall that
a spacetime is said to be future one-connected if any two smooth, future directed timelike curves
from a to b are homotopic through (smooth) future directed timelike curves with fixed endpoints
a and b. Therefore, by Theorem 2 we have the following result which recover Proposition 1.

Corollary 3. LetNn+1
1 be a future one-connected globally hyperbolic spacetime of signature (1, n)

withK(π) ≥ c ≥ 0 for any mixed 2-plane π of signature (1, 1) inNn+1
1 , and ψ : Mn → Nn+1

1 be
a complete spacelike hypersurface in Nn+1

1 whose sectional curvatures are bounded away from
−∞. If

inf
M
d(a,ψ) = r or inf

M
d(ψ, a) = r
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for some a ∈ Nn+1
1 and r > 0, then for j = 1, · · · , n,

sup
M

| Hj |≥ α(c, r)j.

Consequently, there exists no complete spacelike hypersurface ψ : Mn → Nn+1
1 whose sectional

curvatures are bounded away from −∞ and thatHj = 0 for some odd j orHj ≤ 0 for some even
j and ψ(M) ⊂ Ω(a, r) for some a ∈ Nn+1

1 and r > 0, where

Ω(a, r) = {x ∈ Nn+1
1 : d(a, x) ≥ r or d(x, a) ≥ r}.

Let Nn+pp (c) be the simply connected semi-Riemannian space form of signature (p, n) with
constant sectional curvature c, i.e.,

Nn+pp (c) =

⎧⎪⎪⎨
⎪⎪⎩
S
n+p
p (c) ⊂ R

n+p+1
p , c > 0;

R
n+p
p , c = 0;

H
n+p
p (c) ⊂ R

n+p+1
p+1 , c < 0.

Let 〈, 〉 be the inner product on corresponding semi-Euclidean space. Our second main result is
the following.

Theorem 4. LetNn+pp (c) be the simply connected semi-Riemannian space form of signature (p, n)
with constant sectional curvature c andψ : Mn → N

n+p
p (c) be a complete spacelike submanifold

of signature n in Nn+pp (c) whose Ricci curvatures are bounded away from −∞. If

inf
M

〈a,ψ〉 = 1

c
cosh(

√
cr)

when c > 0 or

sup
M

〈ψ − a,ψ − a〉 = −r2

when c = 0 or

sup
M

| 〈a,ψ〉 |= 1

−c cos(
√−cr)

when c < 0, for some a ∈ Nn+pp (c) and r > 0 (when c < 0, we assume that r < π/(2
√−c)). Then

supM | H |≥ α(c, r), where H is the mean curvature vector of ψ.

2. Preliminaries

Let (Nn+1
1 , 〈·〉) be a spacetime of signature (1, n), and d : M ×M → R ∪ {∞}

be the corresponding Lorentzian distance function. Let T−1N |a= {v ∈ TaN :
v is future directed and 〈v, v〉 = −1} be the fiber of the unit future observer bundle T−1N

at a. Define the function sa : T−1N |a→ R ∪ {∞} by sa(v) = sup{t ≥ 0 : d(a, γv(t)) = t}, where
γv : [0, r) → Nn+1

1 is the future inextendable geodesic with γv(0) = a and γ̇v(0) = v. Now we
give the definitions of I+(a) and I−(a) as following.

Definition 5. Let (Nn+1
1 , 〈·〉) be a spacetime of signature (1, n), and a ∈ Nn+1

1 . Define Ĩ+
(a) =

{tv : v ∈ T−1N |a and 0 < t < sa(v)} andI+(a) = expa(int(Ĩ+
(a))). The setI−(a) can be defined

dually.
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We have the following result for the smoothness of the Lorentzian distance function(see e.g.,
[5]).

Lemma 6. If I+(a) �= ∅ (resp. I−(a) �= ∅), then the function d(a, ·) (resp. d(·, a)) is smooth on
I+(a) (resp. I−(a)).

Now let σ : [0, r] → Nn+1
1 be an unit-speed timelike geodesic. The index form Iσ on σ is

defined by [6]

Iσ(V,W) = −
∫ r

0
(〈DTV,DTW〉 − 〈R(V, T )T,W〉) dt, (3)

where T = σ̇ is the tangent vector of σ,D the Levi-Civita connection of Nn+1
1 , R the curvature

tensor of Nn+1
1 and V,W are the vector fields along σ and perpendicular to σ, respectively. A

vector field J along σ is called the Jacobi field if it satisfies the following equation:

DTDTJ = R(T, J)T. (4)

We have

Lemma 7. (Maximality of Jacobi fields [4]) Let Nn+1
1 be a spacetime of signature (1, n), and

σ : [0, r] → Nn+1
1 be an unit-speed timelike geodesic such that there are no conjugate points of

σ(0) along σ. Let J be a Jacobi field on σ and X be a vector field on σ such that X(0) = J(0),
X(r) = J(r) and J,X are orthogonal to σ. Then Iσ(X,X) ≤ Iσ(J, J).

Lemma 8. Let Nn+1
1 be a spacetime of signature (1, n) with K(π) ≥ c for any mixed 2-plane

π of signature (1, 1) in Nn+1
1 , and σ : [0, r] → Nn+1

1 an unit timelike geodesic (when c < 0, we
assume that r < π/(2

√−c)). Let J be a Jacobi field on σ such that J(0) = 0 and J(r)⊥T . Then

Iσ(J, J) ≤ −α(c, r) | J(r) |2 .
Proof. We prove the lemma for c < 0, other cases can be verified similarly. In this case, let
σ̃ : [0, r] → Hn+1

1 (c) be a unit-speed timelike geodesic in Hn+1
1 (c). Since r < π/(2

√−c), there
exist no conjugate points of σ̃(0) along σ̃. Choose the Lorentzian frame ẽ1(t), · · · , ẽn+1(t) of
Hn+1

1 (c) along σ̃ such that ẽ1(t), · · · , ẽn(t) are parallel along σ̃ and ẽn+1 = T̃ = ˙̃σ, the tangent
vector field of σ̃. Let

J̃(t) =| J(r) | sin(
√−ct)

sin(
√−cr) ẽ1(t)

be a Jacobi field on σ̃. Similarly, we choose the Lorentzian frame e1(t), · · · , en+1(t) of Nn+1
1

along σ such that e1(t), · · · , en(t) are parallel along σ, en+1 = T and J(r) = | J(r) | e1(r). Write
J(t) =∑n

i=1 hi(t)ei(t). Let X̃ =∑n
i=1 hi(t)ẽi(t) be a vector field along σ̃. Then by Lemma 7 and

the assumptions of Lemma 8 we get

Iσ(J, J) = −
∫ r

0
(〈DTJ,DT J〉 − 〈R(J, T )T, J〉) dt ≤ −

∫ r

0

(
n∑
i=1

(
ḣ2
i + ch2

i

))
dt

= −
∫ r

0

(〈D̃T̃ X̃, D̃T̃ X̃〉 − 〈R̃(X̃, T̃ )T̃ , X̃〉) dt = Iσ̃(X̃, X̃) ≤ Iσ̃(J̃ , J̃)

= −α(c, r) | J(r) |2,
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where D̃ and R̃ are the Levi-Civita connection and the curvature tensor of Hn+1
1 (c), respectively.

So the lemma is proved. �

3. The proof of theorems

We shall complete the proof of Theorems 2 and 4 in this section. Let ψ : Mn → Nn+1
1 be a

spacelike hypersurface in Lorentzian (n+ 1)-manifold, and ∇ be the Levi-Civita connection on
M. Then the Gauss and Weingarten formulas for M in Nn+1

1 are given respectively by

DXY = ∇XY − 〈AX, Y〉ξ (5)

and

A(X) = −DXξ (6)

for all tangent vector fields X, Y ∈ χ(M). Here ξ is the local unit timelike normal vector field
along ψ(M), and A : χ(M) → χ(M) stands for the shape operator of M in Nn+1

1 associated to ξ.
Associated to the shape operator of M there are n algebraic invariants, which are the elementary

symmetric functions σj of its principal curvatures λ1, · · · , λn, given by

σj(λ1, . . . , λn) =
∑

i1<...<ij

λi1 . . . λij , 1 ≤ j ≤ n.

The jth mean curvature Hj of the spacelike hypersurfaces is then defined by(
n

j

)
Hj = σj(λ1, · · · , λn). (7)

We note that the jth mean curvature Hj is intrinsic for even j and is extrinsic for odd j.
Now we are ready to prove Theorems 2 and 4.

Proof of Theorem 2. Without loss of generality we assume thatψ(M) ⊂ I+(a), and ρ̃ = d(a, ·) :
Nn+1

1 → R be the Lorentzian distance function onNn+1
1 with respect to a. According to Lemma 6

we see that the function ρ = ρ̃◦ψ : M → R is smooth on M, and let us first compute the gradient
and Hessian of function ρ. For convenience we identify ψ(M) with M. For b ∈ ψ(M), let σ :
[0, ρ(b)] → Nn+1

1 be the maximal timelike geodesic from a to b, and X be the unit tangent vector
ofψ(M) at b. By parallel translation we get a vector fieldX(t) along σ. Let ζ : [−ε, ε] → M be the
geodesic on M satisfying ζ′(0) = X. For u ∈ [−ε, ε], let σu : [0, ρ(b)] → Nn+1

1 be the maximal
timelike geodesic from a to ζ(u). Then Γ (t, u) = σu(t) : [0, ρ(b)] × [−ε, ε] → Nn+1

1 be a family
of one-parameter geodesics with σ0(t) = σ(t), σu(0) = a, σu(ρ(b)) = ζ(u) and L(σu) = ρ(ζ(u)).
Let J(t) be the Jacobi field along σ induced by Γ , then J(0) = 0, J(ρ(b)) = X. It follows from
the first and second variations of arc length (see e.g., [6]) that

∇ρ(X) = d

du
L(σu) |u=0= −〈X(b), T (b)〉, (8)

∇2ρ(X,X) = d2

du2L(σu) |u=0= 〈AX,X〉〈ξ(b), T (b)〉 + Iσ(J⊥, J⊥), (9)

whereJ⊥ = J + 〈J, T 〉T . Since infM d(a,ψ) = r, we haveρ ≥ r or −ρ ≤ −r. By the generalized
maximum principle [7] we see that for any ε > 0 there exists a point bε ∈ M such that

| ∇ρ(bε) |< ε, (10)
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∇2ρ(bε)(X,X) > −ε, (11)

for all unit vector X ∈ TbεM, and

r ≤ ρ(bε) ≤ r + ε. (12)

Let e1, . . . , en be the orthonormal frame for TbεM, and write T (bε) =∑n
i=1〈T, ei〉ei − 〈T, ξ〉ξ,

then from (8) and (10) we get

−1 = −〈T, ξ〉2 +
n∑
i=1

〈T, ei〉2 < −〈T, ξ〉2 + ε2,

and consequently,

〈T, ξ〉2(bε) < 1 + ε2. (13)

Combining (9),(11)–(13) and Lemma 8 we see that

−ε < 〈AX,X〉〈ξ, T 〉(bε) − α(c, ρ(bε)) | J⊥(bε) |2≤ 〈AX,X〉〈ξ, T 〉(bε)
−α(c, r + ε)(1 + 〈X, T 〉2) ≤ 〈AX,X〉〈ξ, T 〉(bε) − α(c, r + ε).

Therefore,

α(c, r + ε) − ε < 〈AX,X〉〈ξ, T 〉(bε) ≤| 〈AX,X〉 |
√

1 + ε2. (14)

It is easy to know from (14) that the principal curvatures λ1, . . . , λn of M in Nn+1
1 at the point bε

have the same sign when ε is sufficiently small, and that

| λi |≥ α(c, r + ε) − ε√
1 + ε2

→ α(c, r) (ε → 0). (15)

Thus, from the definition (7) of the jth mean curvature Hj we have

sup
M

| Hj |≥ α(c, r)j.

This finishes the proof of Theorem 2. �

Proof of Theorem 4. We prove the theorem for c > 0, other cases can be shown similarly.
Let ψ : Mn → S

n+p
p (c) be a complete spacelike hypersurface in de Sitter space of constant

curvature c. Recall that Sn+pp (c) = {x ∈ Rn+p+1
p : 〈x, x〉 = 1

c
} ⊂ R

n+p+1
p . For a ∈ Sn+pp (c), let

f = 〈a, ·〉 : M → R. Then it is easy to know that

∇f (X) = 〈a,X〉 (16)

for any unit tangent vector of M, and

�f = n〈a,H〉 − ncf, (17)

where � is the Laplacian operator of M. Since infM〈a,ψ〉 = 1
c

cosh(
√
cr), by the generalized

maximal principle [7] we see that for any ε > 0, there exists a point bε ∈ M such that at bε we
have

| ∇f |< ε, �f > −ε, 1

c
cosh(

√
cr) + ε ≥ f ≥ 1

c
cosh(

√
cr). (18)
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Let e1, . . . , en+p be the semi-Riemannian frame of Sn+pp (c) at bε such that e1, . . . , en are tangent
to M and H =| H | en+1. Since a ∈ Sn+pp (c), it follows from (16) and (18) that

1

c
= 〈a, a〉 =

n∑
i=1

〈a, ei〉2 + 〈a,√cψ〉2 −
n+p∑
α=n+1

〈a, eα〉2 < ε2 + c

(
1

c
cosh(

√
cr) + ε

)2

− 〈a, en+1〉2,

and consequently,

〈a, en+1〉2 < ε2 + c

(
1

c
cosh(

√
cr) + ε

)2

− 1

c
. (19)

Combining (17)–(19) we get

− ε
n
<

1

n
�f <| H |

√
ε2 + c

(
1

c
cosh(

√
cr) + ε

)2

− 1

c
− cosh(

√
cr). (20)

Finally, we have

sup
M

| H |> cosh(
√
cr) − ε

n√
ε2 + c

(
1
c

cosh(
√
cr) + ε

)2 − 1
c

→ √
c coth(

√
cr) (ε → 0),

and the theorem is proved. �
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